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Abstract. Interval algebra(IA) based temporal constraint satisfaction problems 
(TCSPs) are useful in formulating diverse problems. The usual approach to 
solve IA networks is based on partial instantiation strategy - backtrack search 
for exact solution. To the best of our knowledge, determining approximate so-
lution for TCSPs is not addressed so far.  In this paper we propose a new com-
plete instantiation strategy based on a complete algorithm to determine an ap-
proximate solution of IA networks. We identify a property of constraints called 
nastiness that disturbs monotonic nature of entropy of a constraint. We go be-
yond the identification of nasty constraints to pin-point the singleton to restore 
normal behaviour of entropy. On termination, the algorithm guarantees either 
an exact or an approximate solution depending upon the number of constraints 
the solution violates. We demonstrate experimentally that solution to general 
IA networks can be efficiently obtained in time polynomial in the size of the 
network with the success rate of 95% contrary to exponential exact algorithm. 

Keywords: Constraint satisfaction problem, Approximation algorithm, Interval alge-
bra 

1   Introduction 

Constraint Satisfaction Problems (CSP) are in general NP-hard class [6].  On the 
other hand, CSPs have numerous applications in almost all branches of engineering. 
There have been several attempts to devise solution techniques for CSPs. One ap-
proach is to characterize tractable subclasses and to provide polynomial-time algo-
rithm for solving such instances. Another approach is to devise good heuristics and 
search strategies. In order to understand the distribution of hard instances, there have 
also been studies on identifying values of critical parameters which lie between the 
easy instances of under-constrained and of over-constrained instances.  In this paper, 
we attempt to characterize the hardness of problem instances in a different manner.  
One wonders whether there are certain nasty constraints in an instance of CSP that is 
possibly the reason for hardness. And if so is the case, this paves the way to devise 
approximation scheme to solve hard instances by settling these nasty constraints. The 
efficiency of such an approximation method lies in settling very small number of 
nasty constraints to obtain a solution in polynomial time.  

In this paper we study this aspect in the context of qualitative temporal CSP, 
namely Allen’s framework [1] IA. We characterize a reason for late solution for prob-
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lems due to presence of nasty constraints. The major contribution of this paper can be 
highlighted as follows.  

In this paper, we introduce a new polynomial time complete method for determin-
ing an approximate solution of IA network. We start with a path consistent IA net-
work. An iterative transitive closure algorithm such as weighted path consistency 
assigns highest weight to an atomic relation in a label that has maximum likelihood to 
be a feasible relation. Intuitively, when the highest weight relation on the edge agrees 
with the relation with highest weight in the constraint computed by averaging along 
all paths, this relation is the best possible candidate feasible relation in the constraint. 
A conflict occurs when the highest weight relation is not the same as that from the 
paths. This includes following two possibilities: (a) Highest weight relation on the 
edge is present in the averaged constraint, but with a lower weight, (b) Highest 
weight relation on the edge is not present at all in the averaged constraint. Following 
our intuition, in order to forcefully make the two agree, either we raise the lower 
weight of an existing relation to become the highest weight or we introduce a new 
atomic relation with highest weight. We term the constraint that exhibit the property 
of introducing new singletons as highest weight relation to resolve the conflict as 
nasty constraint. This adjustment of weights helps us to reduce the conflicts as and 
when they appear in an iteration. In case of conflicts, the solution may or may not 
violate any constraint. This helps in computing an approximate and early solution for 
hard instances. We prove that presence of nasty constraints in hard instances is re-
sponsible for preventing entropy of constraint from decreasing monotonically. Intro-
ducing the required singletons, restores the monotonic decrease in the subsequent 
iterations. Experiments reveal this method solves general IA networks by violation of 
small fraction of constraints. 

In Section 2, we present IA framework and related work. In Section 3, we summa-
rize weighted path consistency. In Section 4, we introduce the concept of entropy for 
weighted IA network with preliminary experiment. In Section 5, we propose that 
nasty constraints reflect the hardness of any given problem instance in IA with theo-
retical justification in Section 6, which contains the main result of this paper, a poly-
nomial time complete algorithm for approximate solution of hard TCSP. We report 
experimental analysis in Section 7. Section 8 contains conclusions. 

2   Interval Algebra and Related work 

IA defines thirteen atomic relations that can hold between any two time intervals, 
namely before(b), meet(m), ovelap(o), start(s), during(d), finished-by(fi), equal(eq), 
finish(f), contain(di), started-by(si), overlapped-by(oi), meet-by(mi) and after(bi) [1]. 
In order to represent indefinite information, the relation between two intervals is a 
disjunction of the atomic relations. Reasoning for the complete interval algebra is 
known to be NP-hard [22]. Traditional solution techniques for temporal and spatial 
domains are either based on complete[8, 11, 18, 20] or partial instantiation strate-
gies[21]. So far there is no complete method based on complete instantiation strategy 
for approximate solutions for qualitative TCSPs. 
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Research in phase transition is investigated [9, 7, 3, 5, 4] to study instance hard-
ness. In the context of IA network, it is not possible to have any estimate of number 
of solutions. So far we roughly know the hard instances exist for a combination of 
parameters. The entropy based analysis of nasty constraints looks to be promising 
enough to open up a new study in this direction for qualitative CSPs. Basically to 
study a discrete problem consisting of only disjunctions, we are translating it to a 
continuous domain by adapting a weighted formalism.  

3   Weighted path consistency 

In this paper, we use weighted path consistency algorithm as proposed in [13], [2]. In 
a weighted IA network W(N) each constraint is represented as a 13-dimensional 
weight vector Wij R13 such that 0 Wij

m  1, 1 m  13, Wij
m = 1. Wij

m denotes 
the weight of the atomic relation IAm in the constraint between variables i and j. The 
value 0 for Wij

m implies IAm is absent in the disjunction. We call each Wij as weighted 
constraint. Given an IA network N, we obtain the corresponding weighted network 
by assigning equal weights to all the atomic relations present in a constraint. We 
represent the IA-composition table [6] as a 3-dimensional binary matrix M, such that 
Mijm = 1 if and only if the atomic relation IAm belongs to the composition of the 
atomic relations IAi and IAj. The composition of two weighted relations Wik and Wkj

resulting in a relation Wij(k) is denoted as Wik  Wkj. The intersection of two weighted 
relations Wij and Vij is denoted as Uij = Wij  Vij, defined as follows [13]: 
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We follow a slightly different approach for computing the averaged constraint 
along the paths. For each edge, first we compute the non-zero normalized average of 
all vectors that are computed by path-wise composition. This averaged vector is inter-
sected with the edge vector followed by normalization. We use intersection operator 
only once which reduces numerical computations. The weighted path consistency 
algorithm, unlike the conventional path consistency, modifies only the weights of 
constraints. The atomic relations with higher weights are more favorable to be the 
feasible ones, whereas those with smaller weights are less likely to participate in a 
solution. There will be no occasion when the weight values in the vectors will stop 
changing unless it is a network only with singleton labels(trivial case). 

4  Entropy of IA network 

In this section, we introduce the concept of entropy for IA network in the context of 
weighted formalism. In [14, 15, 16], the three properties of measures on entropy 
given in [19] are generalized. The Renyi’s quadratic entropy (RQE) is given as 

2)(log ij
mm W .  In the context of minimizing entropy, for the sake of convenience, 
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log in the above expression is normally dropped. For the present study, we loosely 
define entropy to be without log [23].

Definition 1: Entropy of a weighted constraint Wij is defined as follows  
110)( 2 ij
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Definition 2: Entropy of a weighted network is defined as follows 

ij

ij
wN EE

The least entropy of a constraint corresponds to a singleton relation and the highest 
entropy is when it has non-atomic relations with equal weights. Path consistency 
algorithm indeed prevents the entropy of the constraint network from increasing. 

Theorem 1: For a given network N, enforcing path consistency does not increase EN . 
              
 We illustrate this with the help of a simplex triangle (Figure 1) for a constraint with a 
maximum of three atomic relations. The three vertices C, D and E are the lowest 
entropy points that correspond to the three possible singleton labels for the constraint. 
The centre A corresponds to the highest entropy corresponding to equal weights for 
the three relations. The contours represent states with equal entropy. The entropy 
state at an edge indicates a conflict between the two singleton labels. 

Figure 1. Simplex Triangle 
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Figure 2. No. of constraints with fluctuating entropy for 
M(n,d,7) for known consistent problems.

In the conventional path consistency, we move from A to C in one step or from A 
to B and then possibly to C. In the event of a solution, the search ends at a vertex else 
it stops at either A or at B. Ideally, any search technique should choose a descending 
path from A to one of the vertices, say D (Figure 1). We have experimented initially 
with convex IA networks. For our experimental study, we generate random instances 
based on three parameters, namely network size(n), constraint tightness(d) and label 
size(t) [12], [13]. We experimented with 200 instances for each value of n in the 
range [10,100]. There was not a single instance out of randomly generated 3800 con-
vex problem instances with any fluctuation in the entropy. We repeat the same ex-
periment for general IA networks that are known to be consistent. We find that unlike 
the convex case, the entropy values of some constraints increase after an initial de-
crease, but again continue to decrease until stabilization i.e non-monotonic behaviour. 
Thus for convex network, the entropy value for every edge takes a descending path 
from the centre of the simplex to a boundary (Figure 1), a monotonic behaviour. On 
the other hand, the trajectory of entropy value of any edge in a non-convex network 
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need not be a descending path but a longer trajectory path. The search begins at the 
centre towards a vertex, but moves along the periphery of a contour with smaller 
entropy.  

The number of constraints with fluctuations in entropy is very high for the problem 
instances in the hard region [12].  Figure 2 depicts the number of such constraints in 
instances with t = 7, n in the range [10,50] and  d in [10, 50]. The peaks in the graphs 
(Figure 2) are the regions of hard instances (one to one correspondence of peaks is 
not possible due to the different model for generating problem instances used in this 
study). This has motivated us to study the behaviour of entropy in order to identify 
the cases when entropy increases. This study narrows down to basic fundamentals of 
multiplication of two vectors. The difference between entropy of a pair of vectors 
consisting of same number of non-zero entries, depends on the relative order of their 
highest value. When the number of non-zero entries in the two vectors is not same, 
then one cannot conclude clearly as which of the two will have a higher value of 
entropy. It depends on the relative distribution of the values within the vector. We 
formalize these observations as following results: 

Theorem 2: Given two normalized vectors U and V with same no. of non-zero com-
ponents, i.e. nz(U) = nz(V),   E(U) E(V)     iff max(U)  max(V), where max(U)
is the component with highest value. 

Theorem 3: Given two normalized vectors U and V such that nz(V)>nz(U), then 
max(V)>max(U) is not a sufficient condition for E(V) < E(U) .

5   Nasty Constraints 

In this section, we identify a new property of weighted IA constraints called nastiness
that is responsible for a difficulty in computing solution of a problem instance. Sup-
pose Wij is the weighted constraint on the edge (i,j) and W is the averaged constraint 
obtained from all possible paths using the weighted composition operator as ex-
plained in section 2. Wavg is the constraint obtained by weighted intersection of Wij
and W at the end of the current iteration of weighted path consistency. We study the 
impact of replacing Wij by Wavg in terms of weights of atomic relations that will in-
crease or decrease with the help of inner product of vectors.  

Lemma 1: Given two weighted IA constraints U = [ui] and V = [vi], the normalization 
factor  = uivi will satisfy the conditions, umin umax and vmin vmax where 
ui [umin, umax], vi [vmin,vmax]. 

Theorem 4: Wavg[argmax(Wij)]>Wij[argmax(Wij)]
  iff argmax(Wij) Whigh  where p Whigh, W[p] , = uivi.

The normalization factor divides the vector W into two halves, the relations with 
weights greater than normalization factor will increase if Wavg replaces Wij. In other 
words, if the highest weight relation on the edge is among the higher weight relations 
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in the averaged constraint along the paths, then its weight is guaranteed to increase 
further. Contrary to this, when the highest weight relation on the edge is not the high-
est weight relation in the averaged constraint, a conflict takes place. Whether this 
conflict will lead to a decrease in the weight of the highest weight relation on the 
edge by replacing Wij by Wavg, is an obvious consequence of the above theorem. We 
formalize this condition as the following lemma. 

Lemma 2: If argmax(Wij) Whigh, then Wavg[argmax(Wij)] < Wij[argmax(Wij)]. 

Our premise is that as the weighted path consistency algorithm iterates, the weights 
in the network are adjusted based on the influences of the weights of the edges along 
the paths. Thus in an ideal situation (for eg a convex network), above lemma should 
not be satisfied at all. There are two possibilities here, the highest weight relation may 
exist in the averaged constraint with a lower weight or may be absent i.e. a weight of 
zero. In the first case, we solve the conflict by forcing the weight in the constraint 
resulting after intersection to be the highest value such that it becomes the highest 
weight relation for the next iteration. In the second case, as mentioned in the earlier 
section, the entropy of the constraint may or may not increase. In the latter case, a 
new atomic relation is forced to dominate other weights in the next iteration. For the 
cases when the next iteration highest weight value is less than the highest weight 
value in the current iteration, entropy will increase otherwise it will continue to de-
crease. We formalize these observations to introduce a concept of nasty constraints 
for IA networks. 

Definition 3: A weighted IA constraint is said to be a nasty constraint if it satisfies 
either of the following conditions: 
 (a)  If argmax(Wij) Whigh and atomic relation at (argmax(W)) Rij.
 (b)  If argmax(Wij) Whigh and atomic relation at (argmax(W)) Rij.
  and Wavg[argmax(W)] < Wij[argmax(Wij)]

where Rij : constraint on edge (i,j) in the current iteration of weighted path consistency. 

By the study of entropy of weighted IA constraints in the previous section, it is 
obvious that by the very definition of nasty constraint, entropy of a nasty constraint 
will increase when either of the above two conditions are satisfied. We formalize this 
consequence as following result. 

Theorem 5: Entropy of a nasty constraint does not decrease monotonically over itera-
tions of weighted path consistency. 

A vector that is initially generated with all the components with equal values, this 
will correspond to maximum entropy of the vector. If the same vector is subjected to 
some operations in an iterative manner such that the value of one of the components 
goes on dominating all others, the entropy of this vector will go on decreasing assum-
ing number of non-zero components do not change. A stage will come, beyond which 
entropy cannot decrease further and hence stabilizes. We exploit this observation in 
the next section as the termination condition of the algorithm proposed in this paper. 
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6   Approximate solution for IA networks 

In this section, we propose a method to determine an approximate solution for IA 
networks based on our foregoing analyses. We propose an algorithm to identify nasty 
constraints in weighted IA networks and settle these to compute an early solution as 
shown in the pseudocode in Table 3. 
compute_approx_solution(W(N))
 Output: A singleton network  that is a solution 

while no solution  weighted_path_consistency_iteration(W(N)) enddo
weighted_path_consistency_iteration(W(N)) 

Wij k = 1 to n, such that k i and k j
   W(k) = Wik  Wkj   
  W  normalized non-zero average over W(k) 

 =  w[p]wij[p], p = 1 to 13 
  Wavg[i,j]  W  Wij

{where  and  are weighted composition and intersection operators} 
  partition W such that W=Whigh Wlow, Whigh Wlow= ,

p Whigh, W[p] , q Wlow, W[q]<
if (argmax(Wij)  Whigh)

        if (IA(argmax(Wij)) Rij) mark (i,j): nasty constraint endif 
      if (IA(argmax(Wij)) Rij) and (Wavg[argmax(Wij)]<Wij[argmax(Wij)]) 

mark (i,j) as a nasty constraint 
      endif 
      Wavg[argmax(W)] = 1.0 
      renormalize Wavg 
endif 
Replace (i,j)   Wij  Wavg(ij) 

(i,j)  ij  atomic relation at argmax(W) 
   if  is path consistent then solution found  
    (i,j)   if ij  Cij then constraint is violated endif
    where Cij is the disjunctive constraint in the IA network N 

endif
Table 3. approximate solution algorithm. 

Clearly compute_approx_solution is of O(n3T) complexity, if we assume that T
number of iterations of weighted path consistency are executed to compute a solution. 
As per our foregoing analyses in the previous section, this algorithm captures those 
constraints as nasty constraints for which entropy fluctuates. It is observed that there 
are some more constraints that are not the nasty constraints, but still the highest 
weight relation along the paths is forced to become highest on the edge. These are 
those constraints for which a conflict takes place and the highest on the edge is not 
absent along the path, but has smaller weight. We term all the constraints (including 
nasty constraints) where any time this type of adjustment of weights takes place as 
approximated constraints(AC). The algorithm starts with the state of highest entropy 
for all the constraints, that corresponds to the starting point when all the atomic rela-
tions in a constraint are assigned equal weights. As the weighted path consistency 
algorithm iterates, compute_approx_solution ensures that entropy of every constraint 
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to decrease monotonically. In the later iterations, weight of an atomic relation domi-
nates others, leading to the state of least entropy beyond which a bounded variable 
like entropy (with a minimum value of -1) cannot decrease. Over iterations of 
weighted path consistency, our algorithm reduces the number of inconsistent triplets 
in the singleton network by forcing the highest weight relation on the edge to agree 
with the one with maximum support along the paths. We claim that on termination, it 
will compute a solution. The solution may be an exact one for easy instances and an 
approximate one for hard instances. Thus our method is a complete method for de-
termining approximate solution for IA networks.

Theorem 6: compute_approx_solution is a complete algorithm. 

7    Experimental analysis 

The objective of the experimental analysis is essentially to confirm our theoretical 
analyses as discussed in the previous sections. Realizing the algorithm is complete, 
we attempt to determine the instances that are known to be consistent and completely 
cover both easy as well as hard problem regions of IA networks. The experiments are 
conducted on Windows based PC with 2GHz clock speed, 512 RAM and Visual C++ 
environment. We have experimented with 480 instances of known consistent general 
IA networks with n in the range [10,60]. The graphs shown in Figure 4 indicate the 
performance of our method. 

The model for instance generation is same as that proposed in [13]. The iteration at 
which a consistent scenario is obtained, (s) is noted and average of these is taken for 
each combination of n and d. This approach gives an empirical estimate of average 
number of iterations required to get a solution for general IA networks. We make use 
of statistical regression models to analyze empirical results at arrive at the best-fitting 
curve. Figure 4(a) shows that the solution iteration depends on the constraint tight-
ness. Figures 4(b) explains that higher the number of approximated constraints higher 
is the number of violated constraints. Our method is able to solve 100% of the prob-
lems for n in the range [10,40]. Two instances for 40 nodes and five problems in 60 
nodes set of problems are left without a solution, i.e. 95% of success rate. With ex-
perience, we say that this 5% of failure is due to numerical errors. 

Any comparison of this method with backtrack algorithm will not be in place. We 
feel that comparison of two methods that give different types of solutions does not 
help us in this context. However, an outright advantage of our method can be simply 
seen by the fact that for 50 and 60 node problems, backtrack is known to take expo-
nentially high computation time, where as our method gives the solution in a maxi-
mum computation time of 80 minutes, which is equivalent to a maximum of 1000 
iterations of weighted path consistency algorithm. This method is able to solve even 
hard problems in reasonable time despite a large number of nasty constraints. 
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(a)    (b)   (c) 
Figures 4. Linear cubic regression models. 
(a) s = 0.0136 + 0.7529n  - 2.6n2        
(b) AC = 3.83 + 0.7475n + 0.0480n2 - 0.0011n3

(c) VC = 0.73 + 0.16n - 0.00594n2 + 0.0001n3

8    Conclusions 

The present work introduces a new paradigm for TCSP using entropy-based interpre-
tation of IA as against the known method backtrack. We provide an insight into the 
well-known fact that convex networks are easy to solve. General IA problems with 
relations not belonging to any of the tractable classes are solved with help of a com-
plete method. We provide here a linear time algorithm that captures the hardness of 
the problem in terms of nasty constraints, exploiting structure of individual problems. 
Our algorithm computes approximate solution for hard problems in polynomial time 
with exact solution a special case. In the process of handling the conflicts, the link 
with the original problem is not lost. It is possible for an interactive choice of nasty 
constraints to be settled, that may be crucial to the problem. It is possible to keep 
track of iteration-wise resolved atomic relations. User can analyze the impact of 
avoiding or choosing a new atomic relation. We propose to extend this study to pro-
pose PTAS with approximation bounds for general IA networks and overconstrained 
problems. 
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